International General Certificate of Secondary Education CAMBRIDGE INTERNATIONAL EXAMINATIONS CHEMISTRY 0620/2

PAPER 2

OCTOBER/NOVEMBER SESSION 2002

1 hour

Candidates answer on the question paper. No additional materials are required.

Time 1 hour

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

Write your answers in the spaces provided on the question paper.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question.

You may use a calculator.

A copy of the Periodic Table is printed on page 16.

FOR EXAMINER'S USE			
1			
2			
3			
4			
5			
6			
TOTAL			

1 Ammonia, NH₃, is synthesised by the following route.

methane ———— hydroger	า
	iron catalyst
	→ ammonia
air ——— nitrogen	

(a) (i) To which group of organic compounds does methane, CH₄, belong?Put a ring around the correct answer.

alkane	alcohol	alkene	carboxylic acid
			[1]

(ii) Draw the formula for methane, showing all atoms and bonds.

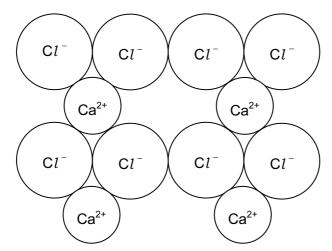
	(iii)	State the most likely source of methane.	
			[1]
(b)	(i)	State the percentage of nitrogen in clean air.	
			[1]
	(ii)	Name another non-metal that is in the same Period as nitrogen.	
			[1]
(c)	Amm	onia is made by heating hydrogen with nitrogen in the presence of a catalyst.	
	(i)	What is the purpose of the catalyst?	
			[1]

What happens to the rate of a reaction when the temperature is increased?

(ii)

(d)	(i) Complete the following equation which shows the synthesis of ammonia from hydrogen and nitrogen.			
	$3H_2 + N_2 \rightleftharpoons NH_3$ [1]			
	(ii) What does the sign ==== mean?			
	[1]			
(e)	The ammonia formed in the reaction is liquefied.			
	Complete the diagram below to show the arrangement of the molecules in liquid ammonia.			
	represents a single molecule of ammonia.			
	[2]			
(f)	How would you test for ammonia in the laboratory?			
	test			
	result [2]			
(g)	Ammonia is used to make fertilizers.			
	(i) Why are fertilizers used in agriculture?			
	[1]			
	(ii) Some fertilizers contain ammonium sulphate.			
	Complete the word equation to show how ammonium sulphate is formed.			
	ammonia + \longrightarrow ammonium sulphate	;		

2 When rain water trickles through rocks, it dissolves some of the minerals present.


This water, which is bottled for drinking, is called mineral water.

The table shows the ions present in a litre of mineral water.

name of ion	formula of ion	mass of ion present in one litre of water/milligrams
calcium	Ca ²⁺	10
chloride	Cl-	8
hydrogencarbonate	HCO ₃	64
sodium	Na⁺	8
sulphate	SO ₄ ²⁻	7

(a)	What do you understand by the term ion?
	[1]
(b)	Which positive ion has the greatest concentration in this sample of water?
	[1]
(c)	Complete the following equation to show how a calcium ion is formed from a calcium atom.
	Ca \longrightarrow Ca ²⁺ + e ⁻
	[1]
(d)	When this sample of mineral water is evaporated to dryness, various compounds are formed. One of these compounds is calcium chloride.
	Suggest the name of two other compounds which could be formed.
	compound 1
	compound 2 [2]

(e) Part of the structure of calcium chloride is shown below.

Use this diagram to work out the simplest formula for calcium chloride.

formula		[1]	

(f) Complete the following table to show the electrical conductivity of calcium and calcium chloride in the solid and liquid states.

Put a ✓ if the substance conducts.

Put a **x** if the substance does not conduct.

substance	state	electrical conductivity
calcium	solid	
calcium	liquid	
calcium chloride	solid	
calcium chloride	liquid	

[2]

(g) A sample of water was contaminated with clay, which is insoluble in water.

Explain with the help of a labelled diagram, how you would separate the clay from the water.

- 3 Fluorine, chlorine, bromine and iodine are halogens.
 - (a) Complete the table by filling in the blank spaces.

halogen	colour	melting point /°C	boiling point /°C	state at room temperature
fluorine	yellow	-220	-188	
chlorine		-101	-35	gas
bromine	reddish- brown	-7	+59	
iodine		+114		solid

[4]

(b) Predict the boiling point of iodine.

[1]

(c) When chlorine is bubbled through a solution of potassium bromide, the solution turns orange - red.

When iodine is mixed with potassium bromide, no colour change occurs.

(i) Write a word equation for the reaction between chlorine and potassium bromide.

[2]

(ii) Put the elements bromine, chlorine and iodine in order of reactivity.

most reactive		
least reactive		

[1]

(d) State a use of chlorine.

[1]

(e) In the presence of sunlight, chlorine reacts with methane.

Hydrogen chloride gas, H — Cl, is given off during this reaction.

State the type of bonding in a hydrogen chloride molecule.

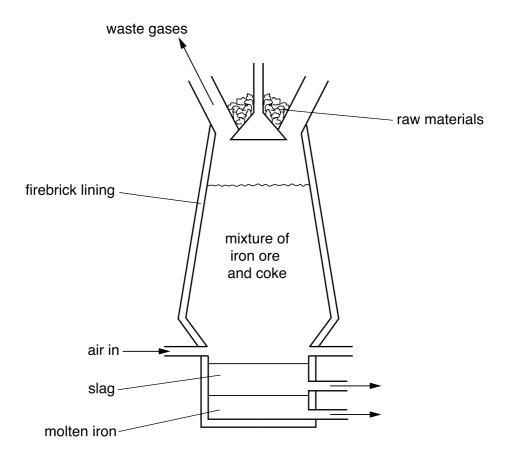
Put a ring around the correct answer.

covalent ionic metallic weak

[1]

0620/2 Nov 2002 **Turn over**

4 Some organic compounds found in ripe fruits are shown below.


		_	•		
	H	H C	CH₃CO₂H	CI	H ₃ CH ₂ CH ₂ CO ₂ H
	H	`H A	В		С
		Cl	H ₃ CH ₂ OH	CH ₃ CH ₂ CHO	
			D	E	
(a)	Wha	at do you	understand by the tern	n organic compound?	
					[1]
(b)			the compounds belon		gous series?
	001	проина		and compound	
(c)	Whi	ch one of	these compounds is a	n unsaturated hydroc	
				***************************************	[1]
(d)	Whi	ch one of	these compounds is a	n alcohol?	
					[1]
(e)		ch one of	these compounds car		y cracking the paraffin fraction
					[1]
(f)	Com		burns readily.		
	(i)	Burning	is an exothermic reac	tion.	
		Explain	the meaning of the ter	m exothermic.	
					[1]
	(ii)	State th	e products formed who	en D burns in excess a	air.

[2]

	(iii)	Name combus		carbon	comp	ound	form	ned	when	D	unde	ergoes	inc	omple	ete
															[1]
(g)	Write o	down the	mole	cular forr	nula o	f com	pound	d C .							[1]
(h)	Calcula	ate the re	elative	e molecul	ar mas	ss of c	compo	ounc	I C.						ניו
															[1]
(i)	Many f	ruits con	tain a	a variety o	of diffe	rent c	olour	ed c	ompoun	ds.					
	What compo	-	on te	echnique	can	you	use	to	separate	e th	nese	differe	nt (colour	ed
															[1]

5 Iron is extracted from the ore, haematite.

The iron ore is put in a blast furnace with coke and a current of air is blown through the heated mixture.

	cement	limewater	limestone	slag	
	Put a ring around th	ne correct answer.			
(b)	What other raw mat	terial needs to be adde	d to the blast furnace?		
					[1]
(a)	vvnat do you unders	tand by the term <i>ore</i> ?			
<i>(</i> - \	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4			

[1]

(c)	Near the	bottom of the fu	rnac	e, iror	n(III) oxide	e is red	uced by	carbon.	
		Fe ₂ O ₃	+	3C	\rightarrow	2Fe	+	3CO	

(i) Write a word equation for this reaction.

(ii)

Explain what is meant by the term *reduction*.

[1]

(d) The table shows the composition of the waste gases leaving the blast furnace.

gas	percentage of gas in the mixture
carbon dioxide	12
carbon monoxide	24
hydrogen	4
nitrogen	60

(i) The hydrogen in the waste gas is formed by the reaction of hot carbon with water vapour.

There is no water in the materials added to the top of the furnace.

Suggest where this water vapour comes from.

______[1]

(ii) The reaction of hot carbon with water vapour is endothermic.

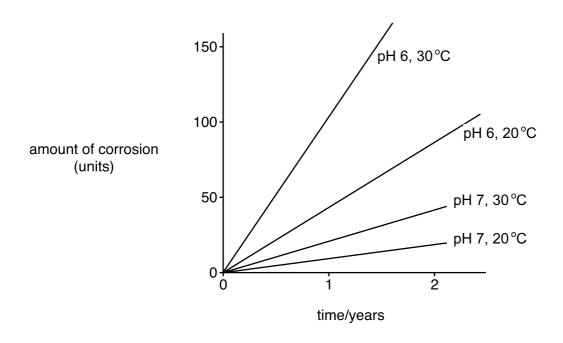
What is meant by the term endothermic?

[1]

(e) Iron can be converted into steel, which is more resistant to corrosion.

(i) Describe briefly how iron is converted into steel.

[2]

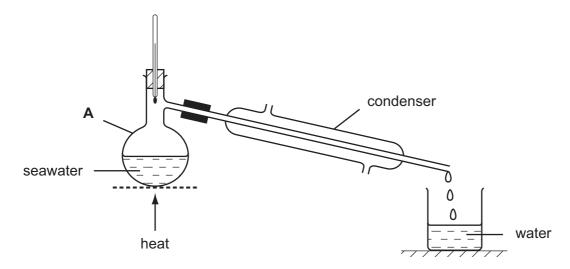

(ii) State one use of mild steel.

______[1]

Turn over

(f) In some conditions, steel corrodes more quickly than in others.

The graphs show the rate of corrosion of a particular type of steel under different controlled conditions.



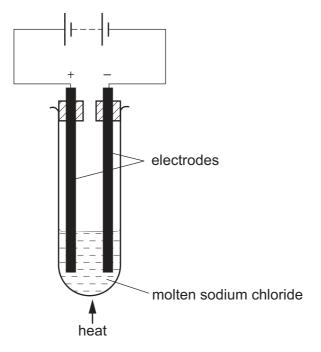
(i)	How does pH affect the rate of corrosion?	
		[1]
(ii)	How does temperature affect the rate of corrosion?	
		[1]
	Explain this in terms of moving particles.	
		[2]

(iii) The presence of acidic gases in the air may increase the rate of corrosion.
State the name and source of one acidic gas found in the air as a result of pollution.

name	
source	 [2]

6 A student took a sample of seawater and heated it using the apparatus shown below.

(a)	Wha	t is the name given to the process shown in the diagram?	
			[1]
(b)	State	the name of the piece of apparatus labelled A .	
			[1]
(c)	Expl	ain the function of the condenser.	
			•••
			 [2]
(d)	Pure	water collects in the beaker.	
()	(i)	State the pH of pure water.	
			[1]
	(ii)	State the boiling point of pure water.	
			[4]


(e) The table shows the mass of various compounds obtained when 1 litre of seawater is evaporated.

compound	formula	mass of solid present / g
sodium chloride	NaC1	28.0
	MgC <i>l</i> ₂	8.0
magnesium sulphate	MgSO ₄	6.0
calcium sulphate	CaSO ₄	2.0
potassium chloride	KC1	
calcium carbonate	CaCO ₃	1.0
potassium bromide	KBr	
		total mass = 45.0

(i) How many grams of magnesium sulphate are present in 180 g of solid left by evaporation of seawater?

(ii)	Which compound in the table reacts with acids to release carbon dioxide?	
		[1]
(iii)	State the name of the compound which has the formula $MgCl_2$.	
		[1]
(iv)	Calcium sulphate contains sulphate ions.	
	Describe a test for sulphate ions.	
	test	
	result	
		[0]

(f) Pure sodium chloride can be electrolysed using the apparatus shown below.

(i)	Why does the sodium chloride have to be molten for electrolysis to occur?	
		[2]
(ii)	State the name of the product formed during electrolysis at	
	the anode (positive electrode)	
	the cathode (negative electrode)	[2]
(iii)	Suggest a suitable substance which could be used for the electrodes.	
		[1]

DATA SHEET
The Periodic Table of the Elements

								Ģ	Group								
_	=											=	≥	>	>		0
							- エ										4 T
							Hydrogen 1										Helium 2
7	o					•						1	12	14	16	19	20
												Ω	ပ	Z	0	ш	Ne
Lithium 3	Beryllium 4											Boron 5	Carbon 6	Nitrogen 7	Oxygen 8	Fluorine 9	Neon 10
23	24											27	28	31	32	35.5	40
Na	Mg											ΝI	Si	۵	တ	CI	Ā
Sodium 11	- 2											Aluminium 13	Silicon 14	Phosphorus 15	=	Chlorine 17	Argon 18
39	40	45	48	51	52	55	56	69	69	64		70	73	75	62	80	8
~	င္မ	Sc	j	>		Mn	Ьe	ပိ	Z	Cn	Zu	Ga	Ge	As	Se	Ŗ	첫
Potassium 19	7 0	Scandium 21	Titanium 22	Vanadium 23	Chromium 24	Manganese 25	Iron 26	Cobalt 27	Nickel 28	Copper 29	Zinc 30	Gallium 31	Germanium 32	Arsenic 33	Selenium 34	Bromine 35	Krypton 36
85	88	88	91	93	96		101	103	106	108	112	115	119	122	128	127	131
R _b	Š	>	Zr	Q N	Mo	ည	Ru	몺	Pd	Ag	පි	In		Sb	ā	Ι	Xe
Rubidium 37	Strontium 38	Yttrium 39	Zirconium 40	Niobium 41	Molybdenum 42	Technetium 43	Ruthenium 44	Rhodium 45	Palladium 46		Cadmium 48	Indium 49	Tin 50	Antimony 51	Tellurium 52	lodine 53	Xenon 54
133	137	139	178	181	184	186	190	192	195	197	201	204	207	209			
S	Ba	Гa	Ξ	<u>Б</u>	>	Re	SO S	<u>-</u>	풉	Αu	Нg	11	Pb	ö		¥	Ru
Caesium 55	Barium 56	Lanthanum * .	Hafnium 72	Tantalum 73	Tungsten 74	Rhenium 75	Osmium 76	Iridium 77	Platinum 78	Gold 79	Mercury 80	Thallium 81	Lead 82	Bismuth 83	Polonium 84	Astatine 85	Radon 86
	226	227															
<u>ጉ</u>	Ra																
Francium 87	Radium 88	Actinium 89															
*58-71	*58-71 Lanthanoid series	id series		140	141	144		150	152	157	159	162	165	167	169	173	175
90-10	90-103 Actinoid series	series		ပီ	Ā	ρN	Pm		En		qL	ک	운	ш		Υp	ī
) -)				Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71
	В	a = relative atomic mass	c mass	232													
Key	×	X = atomic symbol		Ļ	Pa		Np	Pu	Am	Cm	番	Ç	Es	Fm	Md	٥	۲
	Q	b = proton (atomic) number	c) number	Thorium 90	Protactinium 91	Ε	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Lawrencium 103

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).